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ABSTRACT

PMMA and PC samples were subjected to several cooling
rates from the glass transition temperature .

Stress -relaxation data , obtained with these samples under
strains larger than the yield strain, were not influenced by the
cooling rate previously experienced by the material , This shows
that after yielding the effect of previous aging is quickly erased;
similar indications , drawn from calorimetric measurements ,
were already available in ( 11-12 ).

INTRODUCTION

The aging and/or annealing effect on many properties of
solid polymers , especially at small strains, have been extensi-
vely studied by many authors ; in particular Struik ( 1) reports
a remarkable amount of results and reviews most of the material
available in the literature ,

Aging and annealing or more in general the thermal history
undergone by the material certainly ( 1b ) have a significant
effect, although smaller than at small strains., also on the pro-
perties at large strains , For instance changes of yield stress
(1b, 2, 3) and embrittlement in tensile and impact tests have
been observed ( 4- 9) , Furthermore material densification
(1, 3, 13, 14) and enthalpyrelaxation ( which parallels the
enthalpyabsorbed at the glass transition temperature ) on aging
or annealing have been measured (3, 8-12),

On the other hand there are indications that the enthalpy
relaxed may be regained by the material by means of tensile
drawing (11-12),

This work is oriented towards ascertaining the role of
aging in the behavior after material yielding . The results
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obtained by means of some compression tests up to very large
deformations, performed on both polycarbonate and polymethyl~
metacrylate samples, which had been subjected to different
thermal histories, are here presented .

EXPERIMENTAL
The materials studied were bisphenol A polycarbonate
(Lexanﬁ) and polymethylmetacrylate (Plexiglasav) , which were

supplied in the form of rods . Cylindrical samples with
L=D=1cmfor PMMA and L =D = 0.9 cm for polycarbonate
were prepared by machining .

All the samples of each material were annealed together
for 0.5 hr at about 10°C above their glass transition temperatu-
re and were then quenched in ice-water . They were heated

separately up to about their glass transition temperature
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- Fig. 1 Compression stress-strain behavior of PMMA samples
subjected to different cooling rates . ¢ is initial
deformation rate .
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(i.e. the PC samples to 150°C and the PMMA ones to 100°C )
and were subjected separately to different cooling rates, that is
air quenching, 60°C/hr, 1°C/hr for the PC samples and air
quenching, 10°C/hr and 1°C/hr for the PMMA ones .

Stress relaxation measurements after constant velocity
compression ramps were performed at room temperature by
means of an Instron testing machine Mod, 1115,

RESULTS AND DISCUSSION

The stress (@ obtained during the loading ramps previous
to relaxation tests is reported in figs 1 and 2 versus the strain
e EAl/lo , where 1o is the initial sample height and A1 the
sample height decrease during compression , Both the materials
examined showed the same features , In particular, analogously
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Fig. 2 Compression stress-strain behavior of PC samples
subjected to different cooling rates . ¢ is initial
deformation rate ,
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to what was observed in tensile tests (1b, 2, 3) samples sub-
jected to smaller cooling rates showed a larger yield stress .
Furthermore both in figs 1 and 2, where two values of the
strain rate @ are considered, the curves approach each other
after yielding .

Let us briefly discuss the meaning of these observations .
Certainly the material relaxation time ( or the spectrum of
relaxation times ) decreases as the stress increases and only
when it is sufficiently small, may yielding take place . The
changes induced in the material by large strains may thus ( 15)
be considered the inverse of aging and in fact a larger yield
stress is observed with samples more efficiently aged by means
of a smaller cooling rate . Also, the fact that, after yielding,
the stress-strain curves of figs 1 and 2 approach each other
suggests that the differences induced in the samples by previous
(aging ) treatments are quickly erased .

Similar indications were in fact drawn in (11-12) from
the observation that tensile drawing of ABS resins produced an
enthalpy change matching the entalpy relaxation due to the thermal
history undergone by the sample ,

More detailed indications may be obtained from the stress-
relaxation data reported in figs 3 and 4 as G/ 00 ( where o,
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Fig. 3 Compression stress-relaxation behavior of PMMA samples
subjected to different cooling rates . er is relaxation
strain ,
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is the stress at the end of the loading ramp ) versus time t .,
For each material all the tests were performed at the same
strain ey (larger than the yield strain ) on the samples whose
loading was already considered in figs 1 and 2 ,

The data of figs 3 and 4 show that the cooling rate does
not affect the relaxation behavior after yielding . In other words,
in this zone, the relaxation time does not seem to depend upon
the relaxation time of the material prior to the test, which con-
versely is certainly influenced by the previous thermal history
and/or aging : the increase of small strain relaxation time is
completely reversed by the yielding process .

On the other hand the data of fig. 4 show that, as already
observed in other cases ( 16 ), the material viscoelastic
behavior in the plastic zone (after yielding ) depends on the
strain rate adopted in the loading ramp .

Both the effects mentioned above may be summarized as
follows , Whatever is the aging history experienced previously
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Fig. 4 Compression stress-relaxation behavior of PC samples
subjected to different cooling rates . e, is relaxation
strain .
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by the material, in order to have yielding, the molecular mobili-
ty has to increase to a level which depends only on the strain
rate @, ; during this process the effect of previous aging is
completely erased .
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